A data-centric AI approach to Credit Scoring in Retail Banking

High scores in Retail Banking

Credit scoring in retail banking traditionally involved manual evaluation of payment behavior, age, wage, gender, zip code, and other personal information. However, with the growth of financial institutions and the volume of data, machine-learning solutions have become more prevalent.

Our platform Fabric optimizes data quality to enhance credit scoring by improving data cleansing and balancing the dataset. The solution involves iterating and improving the quality of available training data while comparing the impact of different data preparation methods. Fabric leverages synthetic data and data quality profiling to measure impacts throughout the iterations, resulting in an explainable and generalizable solution.

Download our case study and learn how.



Privacy preserving synthetic data

Identity Disclosure Risk in a Fully Synthetic Dataset

In today's digital age, data has become an integral part of every organization's operations. Companies gather and analyze vast amounts of data to make informed decisions and gain insights into their customers' behavior and preferences....

Read More
synthetic data generation for transactional datasets in Finance

Democratized access for large transactional datasets

The value of data and the adoption of data-driven strategies have proven valuable for many organizations, particularly the financial services sector, with cases ranging from fraud detection to improved credit scoring. Nevertheless, privacy...

Read More
smart sensor, turbines, energy

Detecting the failures that are worth preventing

The adoption of a data-driven strategy for Predictive Maintenance empowers energy and utility industries. A successful Predictive Maintenance implementation can reduce maintenance costs by 25–35%, eliminate downtimes by 70–75%, reduce...

Read More